Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition
نویسندگان
چکیده
منابع مشابه
Decomposition and Identification of Linear Structural Equation Models
In this paper, we address the problem of identifying linear structural equation models. We first extend the edge set half-trek criterion to cover a broader class of models. We then show that any semi-Markovian linear model can be recursively decomposed into simpler sub-models, resulting in improved identification power. Finally, we show that, unlike the existing methods developed for linear mod...
متن کاملAlgebraic Equivalence of Linear Structural Equation Models
Despite their popularity, many questions about the algebraic constraints imposed by linear structural equation models remain open problems. For causal discovery, two of these problems are especially important: the enumeration of the constraints imposed by a model, and deciding whether two graphs define the same statistical model. We show how the half-trek criterion can be used to make progress ...
متن کاملTestable Implications of Linear Structural Equation Models
In causal inference, all methods of model learning rely on testable implications, namely, properties of the joint distribution that are dictated by the model structure. These constraints, if not satisfied in the data, allow us to reject or modify the model. Most common methods of testing a linear structural equation model (SEM) rely on the likelihood ratio or chi-square test which simultaneousl...
متن کاملIdentification by Auxiliary Instrumental Sets in Linear Structural Equation Models
We extend graph-based identification methods for linear models by allowing background knowledge in the form of externally evaluated parameters. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantive understanding of the domain, or even from another identification technique. To incorporate such information systematically, we propose t...
متن کاملCounterfactual Reasoning in Linear Structural Equation Models
Consider the case where causal relations among variables can be described as a Gaussian linear structural equation model. This paper deals with the problem of clarifying how the variance of a response variable would have changed if a treatment variable were assigned to some value (counterfactually), given that a set of variables is observed (actually). In order to achieve this aim, we reformula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2016
ISSN: 0303-6898,1467-9469
DOI: 10.1111/sjos.12227